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Controlling the ultimate state of projective synchronization in chaotic systems
of arbitrary dimension
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The ultimate state of projective synchronization is hardly predictable. A control algorithm is thus proposed
to manipulate the synchronization in arbitrary dimension. The control law derived from the Lyapunov stability
theory with the aid of slack variables is effective to any initial conditions. The method allows us to amplify and
reduce the synchronized dynamics in any desired scale with tiny control inputs. Applications are illustrated for
seven- and ten-dimensional chaotic systems.
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Adjacent chaotic trajectories governed by the same n
linear systems may evolve into a state utterly uncorrela
but could be synchronized through a coupling@1#. The con-
cept of chaos synchronization attracts considerable atten
@2–13#. It may lead to some potential applications in secu
communication@2#, ecological systems@3#, and system iden-
tification @4#.

Different forms of synchronization phenomena have be
observed in a variety of chaotic systems, such as iden
synchronization@1#, phase synchronization@5#, and general-
ized synchronization@6#. In partially linear chaotic systems
such as the Lorenz system, projective synchronization
noticed @7# with the characteristic that the states of tw
coupled systems synchronize up to a constant ratio know
scaling factor@8#. Further investigation@9# revealed that it
occurs with a negative trace of the Jacobian matrix in thr
dimensional systems. A recent study@10# derived a genera
condition for projective synchronization in arbitrary
dimensional systems. The early report@11# showed that the
ultimate state of the synchronization is usually unpredicta
Thus a control algorithm@12# was developed to manipulat
projective synchronization in three-dimensional system
And the technique is extended to realize projective synch
nization in nonpartially linear systems@13#. However, for the
general case of arbitrary-dimensional systems, especially
high-dimensional systems, control of projective synchroni
tion poses a challenge. In this paper, we present a gen
control method that can be used to create and manipu
projective synchronization in arbitrary-dimensional system

Projective synchronization results from the partial line
ity of coupled systems. A partially linear system refers to
autonomous system in which the state vectoru associates
linearly with its time derivativesu̇ through Jacobian matrix
M (z), whereM (z)PRn3n contains a variablez that is non-
linearly related to the state vectoru. A coupled system con
sists of a master system~denoted by subscriptm! and a slave
system~denoted by subscripts!. The two subsystems linke
with a coupling variablez can be expressed in the form as

u̇m5M ~z!um,

ż5g~um ,z! , ~1!

u̇s5M ~z!us .
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In the coupled system~1!, the master system evolves ind
pendently, while the slave system is driven by the coupl
variablez that is governed by the master system. Once
JacobianM (z) satisfies the criteria stated in the report@10#,
the states of the master and slave systems will be sync
nized up to a common scaling factor in all correspond
dimensions. Projective synchronization leads to a prop
tional relationship between the master and slave states,
pressed as

lim
t→`

iaum2usi50, ~2!

where the scaling factora is defined by the limit of the state
ratio

a5 lim
t→`

a~ t !5 lim
t→`

iusi /iumi , ~3!

Here idi denotes a norm of a vector. The state ratioa(t)
may vary at any particular instant before the occurrence
projective synchronization. Note that the scaling factor d
pends on the initial conditions and chaotic variables of
underlying system@11#. Consequently, the ultimate state
synchronization is hardly estimated.

We wish to generate projective synchronization
coupled partially linear systems of arbitrary dimension. W
wish to control the ultimate state of synchronized dynam
in a favorable manner. Projective synchronization allows
to duplicate a chaotic system in distinct scales with the sa
topological characteristics~such as Lyapunov exponents an
fractal dimensions! @11#. It can also be utilized to amplify or
reduce the response of the driven system.

We introduce a control method for projective synchro
zation in arbitrary dimension. By incorporating a controll
to the master system, the general form of the controlled s
tem is given as

u̇m5M ~z!um1j ,

ż5g~um ,z! , ~4!

u̇s5M ~z!us,
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where um5(x1 ,x2 ,...xn)T and us5(y1 ,y2 ,...,yn)T, and j
5(j1 ,j2 ,...,jn)T is a control vector. We intend to develop
control algorithm with global stability that enables the co
trol to be effective to any initial conditions of the couple
system. Therefore, the Lyapunov stability theory is employ
for this intention.

To construct a proper Lyapunov function, we first loo
into an error dynamics of projective synchronization by
specting the error vector

e5~e1 ,e2 ,...,en!T5a* um2us , ~5!

whereei5a* xi2yi for i 51,2,...,n anda* is a desired scal-
ing factor. Obviously, if the error~5! tends to be zero, pro
jective synchronization takes place with the desired sca
factor accordingly. We thus consider a Lyapunov function
the form

V~e!5
1

2 (
i 51

n

ei
2. ~6!

According to the Lyapunov stability theory, if the functio
~6! satisfies the first condition:V(e).0 when eÞ0, V(e)
50 when e50, and the second condition:V̇(e),0 when e
Þ0, V̇(e)50 when e50, the error vectore(t) asymptoti-
cally tends to zero leading to lim

t→`
ia* um2usi50. Surely,

the employed Lyapunov function~6! satisfies the first condi
tion. For the second condition, the time derivation of~6!
must be negative, given as

V̇~e!5(
i 51

n

ei ėi,0 for eÞ0. ~7!

Insert ėi5a* ẋi2 ẏi into inequality ~7! and rewrite the in-
equality as

V̇~e!5(
i 51

n

ei~a* ẋi2 ẏi !,0 for eÞ0. ~8!

Substitutingẋi5mium1j i and ẏi5mius into Eq. ~8!, where
mi is the i th row of the Jacobian matrixM , we obtained the
condition V̇(e)5( i 51

n @ei(a* (mium1j i)2mius)#,0 that
can be rearranged into the form as

V̇~e!5(
i 51

n

@eia* j i1eimiei #,0, for eÞ0. ~9!

The inequality~9! carries the control functionj i . If the con-
trol functions are selected in such a way that the condit
~9! is satisfied, the control leads to lim

t→`
e(t)50 and con-

sequently lim
t→`

ia* um2usi50. Thus projective synchro

nization is realized with the specified scaling factora* .
To derive the control functions, we convert the conditi

~9! into an equality form by introducing aslack vector, S
5(K1 ,K2 ,...,Kn) whereKi is a slack variable. Slack vari
able is frequently used in optimization theory@14# to convert
04621
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a ‘‘less than or equal to’’ type of inequality into an equali
form in dealing with constrained conditions. A slack variab
is defined as

Ki5kieiei for i 51,2,...,n ~10!

whereki.0 is called theslack constant, which can be any
real positive value. The value ofki affects the convergenc
rate of the control, which will be discussed later in numeric
applications. Add non-negative slack variable~10! into the
left side of inequality~9!. The inequality~9! is thus con-
verted into an equality form as

e1a* j11e1m1e1k1e1e11e2a* j21e2m2e1k2e2e21¯

1ena* jn1enmne1knenen50. ~11!

Examining equation~11!, a possible solution of the conditio
~11! is that each component corresponding to errorei can be
set to zero, i.e.,

e1~a* j11m1e1k1e1!50, e2~a* j21m2e1k2e2!50,...,

en~a* jn1mne1knen!50. ~12!

Thus the control functions can be formulated as

j i52@mie1kiei #/a* for i 51,2,...,n ~13!

Note that the control functions contain the error term
Maintaining a controlled projective synchronization on
needs tiny control inputs because the errors in the con
functions~13! tend to zero after the synchronization is rea
ized. Therefore, the controlled system preserves the dyna
cal characteristic of the original systems. In what follows,
shall apply the control method to newly explored hig
dimensional chaotic systems.

Example 1 is to direct the ultimate state of projecti
synchronization of a coupled system to a desired state ra
The system used here is a seven-dimensional chaotic sy
recently explored by the authors. Linking such two syste
together with the coupling variablez, the coupled partially
linear system is given as

u̇m5M ~z!•um,

ż53x1x3214z, ~14!

u̇s5M ~z!•us,

with the 636 Jacobian matrix,
8-2
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M ~z!53
214 8 26 1 2 3

28 12 2~813z! 2 3 4

6 ~813z! 222 3 4 5

21 22 23 213 5 6

22 23 24 25 214 ~817z!

23 24 25 26 2~817z! 215

4 .

FIG. 1. ~a! The synchronized
chaotic attractors~master: solid
line, slave: dashed line! of the
coupled system~14!. ~b! The his-
tory of synchronized state.~c! The
variation of scaling factor
against time.~d! The error of the
synchronization and the contro
input ~inset!. The initial
condition $x1,...,x6 ,z,y1,...,y6%
5 $1,...,6,7,8,...,13% and the de-
sired scaling factor,a* 52.
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The initial condition of the coupled system~14! is
$x1,...,x6,z,y1,...,y6%5$1,2,...,6,7,8,...,13%. The desired
scaling factora* is set to 2 and the slack constant is set
ki52 for i 51, 2, ..., 6. The dynamical behavior of controlle
system is illustrated in Fig. 1. Figure 1~a! shows the chaotic
attractors of the master and slave systems in a th
dimensional subspace. The dynamics of the master syste
traced by solid line while the dynamics of the slave system
traced by dashed line. The time-history diagram in Fig. 1~b!
shows that the responses of two subsystems tend to be
portional with the scaling factor of 2. The state ratioa(t)
converges to the specified scaling factor,a* 52 as t→`
@see Fig. 1~c!#. The error~5! of the synchronization decrease
exponentially to a level about 10220 as shown in Fig. 1~d!.
The inset in Fig. 1~d! displays a control input lnuj4u against
the time. It can be seen that once the system is directed
desired synchronous state, the control input tends to be z
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The numerical experiment shows that the control algorit
works very well in the manipulation of the outcome of pr
jective synchronization.

In example 2, we explore the effectiveness of the con
for a sharp change of the scaling factor and the effects of
selection of the slack constants in the control. The con
algorithm ~13! is applied to a coupled nineteen-dimension
system that was explored by the authors according to
criteria @10#. In the coupled system, the master and sla
systems are ten-dimensional linked by the variablez. The
coupled chaotic system is given as

u̇m5M ~z!•um,

ż53x1x327z, ~15!

u̇s5M ~z!•us,

with the 939 Jacobian matrix
8-3
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M ~z!53
214 8 26 1 2 3 4 5 6

28 12 ~813z! 2 3 4 5 6 7

6 ~813z! 222 3 4 5 6 7 8

21 22 23 213 5 6 7 8 ~917z!

22 23 24 25 214 7 8 9 10

23 24 25 26 27 215 9 10 11

24 25 26 27 28 29 216 11 12

25 26 27 28 29 210 211 217 13

26 27 28 2~917z! 210 211 212 213 212

4 .

FIG. 2. ~a! A view of the syn-
chronized chaotic attractors~mas-
ter: solid line, slave: dashed line!
of the coupled system~15!. ~b!
The variation of scaling factor
with the control ki52. ~c! The
variation of scaling factor with the
controlki54. ~d! The variation of
scaling factor with the controlki

510. ~e! The errors associated
with the slack constants.~f! The
control inputs. The initial condi-
tion $x1,...,x9,z,y1,...,y9%
5$1,...,9,10,11,...,19% and the de-
sired scaling factor,a* 55 for
0,t<5 and a* 510 for 5,t
<10.
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The couple system~15! can naturally ~without control!
synchronize up to a scaling factor of lim

t→`
a(t)59.4 when

the initial condition is taken at$x1 ...x9 , z, y1 ...y9%
5$1, 2, 3,..., 19%. Figure 2~a! shows the chaotic attractors o
the master and slave systems in a three-dimension subs
The response of the master system is traced by solid
04621
ce.
e

while the dynamics of the slave system is traced by das
line.

Three control experiments are carried out using differ
values of slack constants for the coupled system~15!. In each
control experiment, all the slack constants are the same.
scaling factor will be directed from a specified valu
8-4
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a* 55 to a new desired valuea* 510 with a sharp incre-
ment of 5. Each experiment runs for 10 time units in whi
the control for each scaling factor lasts 5 time units. Ea
control is conducted continuously in the time interval fro
t50 to 10. All the parameters and initial conditions are t
same in the experiments except the slack constant used

To view the effect of the selection of the slack consta
on the convergence of the control, we use three slack c
stantski52, ki54, andki510 for i 51,2,...,9 in the control
respectively. The results of each experiment are shown
spectively, in Fig. 2. In Fig. 2~b!, by using the slack constan
ki52, the control directs the scaling factor toa* 55 after a
transient period about 3 time-units. Att55, the control still
remains but the desired scaling factor is sharply adjuste
a* 510. A large fluctuation of the scaling factor is observ
in the transient period oft55;7, before the scaling facto
settles down to the new desired value. In Fig. 2~c!, the slack
constantki54 is used in the control. The control steers t
state ratio to the desired scaling factor with shorter trans
period and smaller fluctuation. In Fig. 2~d!, a smooth transi-
tion from one desired scaling factor to the other is obser
with the control of the larger slack constantki510. Obvi-
ously, the three experiments show that the transient perio
controlling the scaling factor to a target value is genera
reduced with an increase of the value of the slack const
v
.

ev
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Clearly, the larger slack constant leads to the faster con
gence rate in the control. Figure 2~e! illustrates the variation
of the error lnue4u against time for the three control cases. T
error of the synchronization decreases at the different r
corresponding to the different slack constants used.
larger value of the slack constant leads to smaller erro
projective synchronization and faster convergent rate in
control. Figure 2~f! shows the three control-input signals co
responding to the different slack constants. The result sh
that the required control input is relatively smaller in th
control when the larger slack constant is used.

In short, we provide a control algorithm to reorganize t
dynamical scale of synchronized state for coupled partia
linear chaotic systems of any dimension. The control la
derived from Lyapunov stability theory with the aid of slac
variables, has the feature of global stability such that
control is effective to any initial conditions of coupled sy
tems. This control method could be employed to enforc
nonsynchronous system to be synchronized, and manipu
the ultimate state of projective synchronization to any d
sired ratio. It allows us to use tiny control inputs to ampli
or reduce the response of the driven system to any scale
short transient period. Numerical experiments have indica
the effectiveness of the control method for high-dimensio
chaotic systems.
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